If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+12t-25=0
a = 4.9; b = 12; c = -25;
Δ = b2-4ac
Δ = 122-4·4.9·(-25)
Δ = 634
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-\sqrt{634}}{2*4.9}=\frac{-12-\sqrt{634}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+\sqrt{634}}{2*4.9}=\frac{-12+\sqrt{634}}{9.8} $
| -4=k+12 | | 2b+3=27 | | x+1/3=4/2 | | 1,2(4x-6)=11 | | -6+11=m-3 | | 2p+32=11 | | 6t-7-8=3 | | -5(n+9)=-6n | | x-9=-8+6 | | -6t+7-8=3 | | 3+15p=6(7-2p) | | g/1.9=3.2 | | 8-(m+3)=-7 | | 12x-3=12-6x | | 11+2p=32 | | (1/5)n-3+(3/5)n=9 | | 0x=180 | | x+2/5=13 | | 5(2+n)=3/5(5+10n) | | g/1.9=3. | | 2w=10-8w=-38 | | 4x+4(-8+3x)=1-x | | 30+x/2=60 | | 6^(x+1)=162x2^x | | 15=r+15 | | 6x11=13 | | 4(x-9)+1=21 | | 8.4y-3.1=16.4y+16.9 | | -5n(n+9)=-6n | | 3x-4(x+8)-6=30 | | 7x+2(x+2)=49 | | -7x-27=8-(x-4) |